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Junctions are fundamental elements that support qubit locomotion in two-dimensional ion trap
arrays and enhance connectivity in emerging trapped-ion quantum computers. In surface ion traps
they have typically been implemented by shaping radio frequency (RF) electrodes in a single plane
to minimize the disturbance to the pseudopotential. However, this method introduces issues related
to RF lead routing that can increase power dissipation and the likelihood of voltage breakdown.
Here, we propose and simulate a novel two-layer junction design incorporating two perpendicularly
rotoreflected linear ion traps. The traps are vertically separated, and create a trapping potential
between their respective planes. The orthogonal orientation of the RF electrodes of each trap relative
to the other provides perpendicular axes of confinement that can be used to realize transport in
two dimensions. While this design introduces manufacturing and operating challenges, as now two
separate structures have to be precisely positioned relative to each other in the vertical direction
and optical access from the top is obscured, it obviates the need to route RF leads below the top
surface of the trap and eliminates the pseudopotential bumps that occur in typical junctions. In
this paper the stability of idealized ion transfer in the new configuration is demonstrated, both by
solving the Mathieu equation analytically to identify the stable regions and by numerically modeling
ion dynamics. Our novel junction layout enhances the flexibility of microfabricated ion trap control
to enable large-scale trapped-ion quantum computing.

Keywords: trapped ion quantum computer, ion trap junction, ion trajectory dynamical stability, two dimen-
sional trap geometry, microfabricated ion trap

I. INTRODUCTION

High-fidelity quantum operations and engineering ad-
vances over the last decade have established trapped ions
as strong candidates for constructing a practical quantum
computer. The fundamental component of a trapped-
ion quantum computer is the RF Paul trap, which uses
oscillating and static voltages applied to electrodes to
constrain ions whose internal states provide the physical
basis for the logical qubits. Lasers and/or microwaves
are used to initialize, read out, and perform quantum
gates on the ionic qubits [1]. While microfabricated lin-
ear traps have been developed for over fifteen years [2–5],
and have been used for sophisticated multi-ion experi-
ments [6, 7], microfabricated junction traps [8] have only
recently shown sub-quantum excitation during transport
[9]. Even with that demonstration, key challenges re-
main to the scaling up of trapped-ion arrays to achieve
the connectivity required for enlarged quantum volume,
faster computational cycles, and increased qubit capacity
[10].

An RF Paul trap confines ions at distances of tens
[11] to hundreds [12] of microns from the closest sur-
faces, effectively isolating them from the environment.
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While Earnshaw’s theorem prohibits the creation of an
electrostatic potential well, an RF electric field can be
applied to particular electrodes to form a time-averaged
pseudo-potential with a minimum determined by the RF
electrode geometry [13]. Quasi-static voltages applied to
separate control electrodes can be used to store and move
ions along the RF null, a line along which the RF electric
field is zero and there is a resulting minimum in the ra-
dially confining pseudopotential. The original Paul traps
typically had hyperbolic electrodes [14], but modern mi-
crofabrication techniques use layered planes of materials
to create two-dimensional trap geometries [15]. Linear
RF nulls are common, but can be modified to produce
curves and junctions for the transfer of ions between mul-
tiple ion traps [16].

There are two main categories of trapped-ion quantum
computing architectures: the quantum charge-coupled
device [17], and those that rely on stationary chains
of ions with all-to-all intra-chain gate operations and
remote entanglement via photons to connect separate
chains [18]. In the former case, ion transport is the pri-
mary conduit for entangling distant ions. In the latter
case, while photonic interconnects are used to connect
distant chains, some level of ion transport between dis-
tinct but nearby chains may still be advantageous.

A 2D ion layout reduces the scaling of transport times
over arbitrary distances from O(n) for a 1D layout to
O(n1/2), where n is the number of ions [19]. A 2D lay-
out also better matches the connectivity requirements of
surface codes used for quantum error correction [20, 21].
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Both 3-way [22] and 4-way [23] junctions enable grid-
based ion transport to support arbitrary 2D movement.
However, scaling the array size using these junctions
presents the challenge of islanded RF electrodes [24, 25]
that require electrical vias and leads routed underneath
the top metal surface, raising the capacitance and resis-
tance of the device, and thereby increasing the RF power
dissipation. These buried leads also increase the likeli-
hood of voltage breakdown between RF and ground, as
they introduce more locations where the RF electrode
or lead approaches a grounded electrode or lead, often
within only a few microns.

Our design achieves 2D connectivity with simple rect-
angular RF electrodes, avoids islanded RF electrodes,
and does not require RF vias. It utilizes low-excitation
transport protocols already developed for use with cur-
rent linear micro-fabricated ion trap designs. The pri-
mary challenge is that two separate trap layers have to
be assembled, imposing design constraints on the con-
ventional microfabrication techniques and limiting opti-
cal access. While these are important considerations, we
consider here whether the trap, if fabricated and assem-
bled, would form a viable junction.

The paper begins with the initial layouts and conven-
tions for the junction design (Sec. II), and then presents
the formal treatment of ion transfer stability (Sec. III,
IV). It concludes with a discussion of the unique chal-
lenges and opportunities that arise on a global level for
the ion trap configuration (Sec. V, VI).

II. BASIC JUNCTION DESIGN

Ions in a surface trap are confined at points above the
top plane of the trap at the RF null. Right-handed or-
thogonal coordinates are used throughout this document,
whereby the ion travels along the x-axis, and the z-axis
is perpendicular to the trap surface [26]. The Peregrine
trap serves as an example to illustrate the proposed junc-
tion [27]. Fig. 1 displays the entire device, where the
relevant trapping portion is in the central isthmus.

In our proposed junction design, the ion trap is du-
plicated, translated vertically, inverted, and then rotated
90◦ about the z axis, as illustrated in Fig. 2. In any such
combined configuration, the fields generated by each in-
dividual trap are modified by the second trap acting as
a ground plane. With simple linear RF electrodes, the
RF null ends up at a distance of less than half the trap
separation, and so the two RF nulls do not directly over-
lap. Nevertheless, the slight separation of the RF nulls is
not an obstacle to ion transfer. For two Peregrine traps
offset by 50µm, the RF nulls are 23.7µm from each sur-
face. The simulations described later show that ions can
still be transferred from one trap to the other, across the
2.6µm vertical separation of the RF nulls.
If RF voltages were applied simultaneously to both

traps, there would be a pseudopotential barrier prevent-
ing the ion from being shuttled from one trap to the

xy
z

FIG. 1. SEM micrograph of a Peregrine trap. This microfab-
ricated trap confines ions to a linear region 72µm above the
surface. The trap consists of alternating aluminum electrode
and oxide insulation layers, with an evaporated gold region
on top.

other. Therefore, a scheme is employed that starts with
the RF voltage applied to trap 0 (lower trap in Fig. 2b)
but not trap 1 (upper trap in Fig. 2b). Once an ion is
transported to the intersection of the traps, the static
and RF voltages are gradually switched until the ion is
confined by trap 1.
For modelling purposes, the x-, y- and z-orientations

are determined by trap 0. The origin of the coordinate
system occurs at the nexus of the junction and is the
symmetric point between the two traps.
A mathematical model describes the transfer of the

ion from its trapping location in the bottom trap at
x = 0, y = 0, z = −s to the upper trap at x = 0,
y = 0, z = s. Here, s is half the vertical separation
between the traps. The potential in the bottom trap is
ϕ0(x, y, z, t) = ϕC(x, y, z + s) + ϕRF (x, y, z + s, t), where
ϕ0 is the sum of the potentials due to the control elec-
trodes (ϕC) and RF electrodes (ϕRF ). The potential
arising from the top trap when the same voltages are
applied to the corresponding electrodes is ϕ1(x, y, z, t) =
ϕC(y,−x, s− z) + ϕRF (y,−x, s− z, t).

The model specifies a protocol for transferring the ion
from the bottom trap to the top trap using a time-
dependent scalar function, f(t), that specifies how the
voltages applied to the trap electrodes are scaled in time.
The total potential is therefore

Φ(x, y, z, t) = (1− f(t))ϕ0 + f(t)ϕ1 . (1)

Simple forms of the transfer function f(t) could be
instantaneous Heaviside functions or linear transitions
from 0 to 1, but in practice smooth transitions to limit
induced motional excitations are preferable.

The subsequent section determines the stability of the
trap throughout the transition from f(t) = 0 to f(t) = 1
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FIG. 2. A conceptual rendering of the two-layer junction
design, here integrated into a potential configuration of par-
allel arrays. Two traps in a pair are vertically separated and
roto-reflected relative to each other. Part a) shows a zoomed-
out view that highlights the linear nature of the traps, and
their orientation relative to each other. The RF electrodes are
green, and the control electrodes are yellow. Part b) shows
the position of the ions in the plane between two traps, with
a junction that lies at the point of symmetry. The ions and
arrows are for illustration; as explained later in the paper the
concept of operation supports one of the traps providing con-
finement at any given time.

over a definite time interval.

III. ANALYTIC ION STABILITY

The analytic expression describing an ion in a Paul
trap is the Mathieu equation. We begin with a treatment
of the relevant aspects of the Mathieu equation in one di-
mension [28], and then extend and apply it to the ques-
tion of trapped-ion stability in three dimensions. Stabil-
ity diagrams locate where confined particle motions can
be maintained. Numerical flight simulations then show
how the ion is stably controlled at all points during the
transfer from one trap to the other.

A. Mathieu stability

The Mathieu equation can be written as

q′′ + (U + 2V cos 2t)q = 0, (2)

with time t, and (1D) ion position q. For the current
application, U corresponds to the static confining voltage
along one dimension. The sign of U determines if the
static voltage is a potential peak or well. The parameter
V corresponds to the root mean square magnitude of the
oscillating voltage. Solutions are stable if they are locally
confined as t → ∞; otherwise, they are unstable.

FIG. 3. Stability diagram for parameter pairs (U, V ) in
the one-dimensional Mathieu equation, Eq. 2. The plot dis-
plays 0 for unstable points and positive values for stable
solutions. Relevant analytically smooth bounding functions
a0(V ), a1(V ), b1(V ) are colored black and labeled.

Taking even integers r, solutions of the form

q =
∑
r∈2Z

cre
(w+ri)t (3)

are considered, noting that their boundedness depends
on the real part of w ∈ C, an arbitrary parameter. For
Eq. 3 to be a solution (with non-zero constants cr), the
algebraic equations

ζrcr−2 + cr + ζrcr+2 = 0

with ζr = V/[(r − wi)2 − U ] must be completely satis-
fied. Thus, the vanishing of the meromorphic function

∆(iw) =

∣∣∣∣∣∣∣∣∣
· · · · · · · · · · · · · · · · · · · · ·
· · · ζ−2 1 ζ−2 0 0 · · ·
· · · 0 ζ0 1 ζ0 0 · · ·
· · · 0 0 ζ2 1 ζ2 · · ·
· · · · · · · · · · · · · · · · · · · · ·

∣∣∣∣∣∣∣∣∣
over C locates the non-trivial solutions.
The function ∆(iw) of w is periodic, with period 2i.

Further, it is even: ∆(iw) = ∆(−iw). Its behavior is
determined by the strip 0 ≤ ℑ(w) ≤ 1. The only singu-
larities of the function ∆(iw) are simple poles occurring
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where U − (r− iw)2 = 0. In particular, there is only one
pole on the strip 0 ≤ ℑ(w) ≤ 1.
Next, consider the even meromorphic function

χ(iw) =
[
cosπiw − cosπ

√
U
]−1

with period 2i, and also with simple poles at the same
locations as those of ∆(iw). It follows that there is a con-
stant C, determined by the ratio of the residues of the
functions ∆ and χ at their common pole on the strip,
such that the function ∆(iw) − Cξ(iw) has no singular-
ities, and is therefore constant by Liouville’s theorem.
Setting w = 0 determines C, and further algebra yields
the existence of bounded solutions when

w =
1

π
cos−1[1−∆(0)(1− coshπ

√
U)] (4)

for real w. These w-values may be located by iterative
approximation, readily identifying the set S of stable
pairs (U, V ) as displayed in Fig. 3 (compare Ref. [28,
Fig. 8(a)]). The relevant curves separating the stable
and unstable regions are labelled with standard function
names a0, a1, b1.

B. Junction stability

The analysis of an ion trap involves three distinct
Mathieu equations, one for each dimension. The inter-
play of these equations imposes additional stability con-
straints. In the process of transferring an ion from trap
0 to trap 1, the static and RF potentials are expressed as
quadratic functions at the RF null, neglecting the minute
higher-order contributions. Thus, taking Z = z − s′

(where s′ = −s (+s) for the lower (upper) trap) to be
the vertical distance from the RF null of the applicable
controlling trap, the potential is of the form

ax+ by+ cZ+dxy+eyZ+fZx+αx2+βy2+γZ2 . (5)

Assuming a trap potential that is composed of the RF
nulls of each trap, and symmetric control voltages that
eliminate the cross terms, all terms in Eq. 5 become 0
except for α, β, and γ. Additionally, the traps are as-
sumed to be ideally linear with infinite extent along the
x-axis for the bottom trap (y-axis for the top), such
that αRF = 0. The absence of free charges implies
α+ β + γ = 0 for each field, allowing simplification to

ϕC = αx2 + βy2 + γZ2

with γ = −α− β, and

ϕRF = cos(2t)(−2µy2 + 2µZ2)

with the parameter µ tracking the RF voltage. The RF
voltages applied to the bottom and top traps are set to
be in-phase.

Accounting for the relative rotoreflection of the top and

bottom traps, with small control electrode field deviation,
the total potentials are calculated to be

ΦC =
[
(1− f(t))α+ f(t)β

]
x2

+
[
(1− f(t))β + f(t)α

]
y2

+
(
1− f(t)

)
γ(z + s)2 + f(t)γ(s− z)2

and

ΦRF = cos(2t)
[
−f(t)2µx2 −

(
1− f(t)

)
2µy2

+
(
1− f(t)

)
2µ(z + s)2 + f(t)2µ(s− z)2

]
.

For evaluating the stability of this trap it suffices to de-
termine if the pairs(

tβ + (1− t)α, tµ
)

and
(
− α− β, µ

)
(6)

lie in the stable set S for 0 ≤ t ≤ 1. By assumption,
the motional excitation of the ion and the spatial sepa-
ration of the traps is small enough such that, if the ion
is trapped by one pseudopotential at the junction, it is
also trapped by the other (although the nulls are not the
same). The validity of this assumption is borne out by
the flight experiments described in Sec. IV

When an ion is held at a single point in a simple lin-
ear trap, stability merely requires that the three points
(α, 0), (β, µ), and (−α − β, µ) all lie in the stable set
S. This situation, illustrated in Fig. 4, applies at the
start of a junction transfer, when t = 0. When α = 0
in the figure, the two stability conditions imposed are
(β, µ), (−β, µ) ∈ S. This corresponds to requiring the
point (β, µ) to lie both in the region displayed in Fig. 3,
and in the corresponding region obtained by reflection
about the line U = 0. The bounding surfaces of this
stability region are determined by the inequalities

a0(µ) < β , (−α− β) < min{a1(µ), b1(µ)}

using the functions defined in Fig. 3, and α > 0.

A complete junction transfer (µ, β, α) is considered to
be stable if each of the three individual one-dimensional
Mathieu equations remain stable throughout the trans-
fer operation. Thus, as described by Eq. 6, the stability
condition is the conjunction of the simple stability con-
dition that (−α − β, µ) lies in S, and the dynamic sta-
bility condition that (α(1 − t) + βt, µt) lies in S for all
0 ≤ t ≤ 1. A map of parameter points (µ, β, α) which are
stable for a linear trap, but unstable for a junction trans-
fer, is shown in Fig. 5. Note the four portions, all lying
in the region depicted in Fig. 4. The bottom portions
are banned for small values of α. These regions corre-
spond to when the ion escapes along the x axis when the
line formed by

(
tβ + (1− t)α, tµ

)
crosses below a0. The

boundary of this region is then computed, considering
the line (α, 0)− (β, µ), to obtain the inequalities

m =
β − α

a′0µ
and a0(m) <

β − α

µ
m+ α .
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FIG. 4. The three-dimensional region of stability for a single
linear Paul trap. The region is symmetric in the RF voltage
parameter µ. Since the parameter α controls the ion along
the trap axis, it must be positive. The parameter β tracks
the static electrode transverse containment.

The top portions correspond to α > 1.0, the point of sep-
aration between the regions of stability in Fig. 3. Physi-
cally, this region appears because α > 0 confines the ion
along the x-axis, but repels it along the z-axis, no longer
confining the ion when the repelling force due to large α
rivals the confining pseudoforce due to µ. The different
regions of stability are connected by a single point. When
(α, 0) is in the second region of stability, (α(1−t)+βt, µt)
intersects an unstable region, and the junction fails. A
protocol holding the parameters in this region would cre-
ate an unstable ion trap junction. On the other hand,
protocols within the difference set between the respec-
tive regions of Fig. 4 and Fig. 5 keep the junction stable.
Qualitative analysis of ion motional frequencies indicates
that low values of α and µ are expected for trap oper-
ation. Thus, the α > 1.0 region of instability does not
impede ion junction operation in practice.

We have thus demonstrated analytically that transfer
protocols, stable under adiabatic operation, exist for the
proposed geometry represented by the set difference be-
tween Fig. 4 and Fig. 5. In those cases for which the
point (µ, β, α) lies in the region specified by Fig. 5, the
control electrodes corresponding to α and β can be tuned
to ensure junction stability.

IV. NUMERICAL ION STABILITY

As a complement to the analysis in the preceding
section, numerical simulations were also performed to

FIG. 5. A map contained within the region depicted in Fig. 4,
illustrating the parameter space where a junction between two
linear Paul traps would become unstable. The set difference
between the regions depicted in Fig. 4 and here determines
the stability region for the junctions. The relevant unstable
regions for single ion traps are the twin dark blue volumes
at the bottom. These unstable regions may be avoided by
tuning the control electrodes.

demonstrate the successful transfer of an ion from one
trap to the other, under standard stability conditions for
intermediate junction states. An electrostatic model was
generated, and control solutions to trap the ion in all
three directions at each of the final null points (corre-
sponding to f(t) = 0 and 1) were obtained. The resulting
potentials were used to calculate the electric fields and
ion dynamics using the Runge-Kutta (RK4) method [29].
The following subsections provide more details about
these steps.

A. Field and flight simulation

Each electrode generates an electric field based on the
supplied voltage and trap geometry. The geometry an-
alyzed here uses the same lateral layout of electrodes
as in the Peregrine trap, which by itself has an ion
height of 72µm. When two of these planes of electrodes
are combined in the orientation shown in Fig. 2 with
a 50µm separation, the RF null moves to 23.7µm above
the lower trap. For an applied RF voltage with a 31MHz
drive frequency and 56V amplitude, this trap produces
a 2.75MHz radial trapping frequency for ytterbium ions,
corresponding to µ = 0.25. The general methodology for
correlating practical trap designs with the analytic treat-
ment in this paper is explained in the caption for Fig. 6,
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which includes the unusually high value of µ = 0.75 to
demonstrate trap dynamics. As µ is decreased, ion en-
trapment becomes sinusoidal, avoiding the sharp peaks
observable in Fig. 6.

Using this geometry, a boundary element model was
generated with Charged Particle Optics (CPO) software
[30] to determine the electric potential on a grid of points
in the region of interest around where the two traps cross.
These potentials were numerically calculated for voltages
applied to each trap separately (while the other trap was
grounded). The output was a grid of electric fields for
each trap, which could be added together after being
scaled by the applied voltages and f(t) to calculate the
field dynamics before, during, and after the transition.
To calculate ion trajectories accurately, Catmull-Rom in-
terpolation [31] was used to interpolate between mesh
values.

For the flight simulation the state of the ion is taken
to be (c,p,v), where c,p, and v are the charge, posi-
tion, and velocity, respectively. The ordinary differential
equation governing the ion dynamics is

∂t(c,p,v) =
(
0,v,

∑
r∈rect

∇Φ(p, t)
)
,

where
∑

r∈rect ∇Φ(p, t) is the sum of the electric fields
over all electrodes given predetermined voltages. The
RK4 method was used to simulate the motion of the ion,
due to its accuracy and efficiency at calculating trajecto-
ries for potentials defined by low-order polynomials.

B. Dynamic junction stability

While the first test of junction stability using the nu-
merical method outlined above verified ion stability at
fixed voltage levels, a second test confirmed the stability
of the complete transfer protocol. The trap from Fig. 1
served as a basis for one of the layers, duplicated to pro-
duce the full local configuration, as shown within the
global configuration of Fig. 2. Initially, a spread of stable
junction parameter configurations was considered, using
the results from Fig. 5.

Stable solutions were verified for f(t) = 1/2, demon-
strating a static solution with the ion suspended between
the traps for a paused junction operation. Then, trans-
fers were validated using a function f(t) which has three
parts consisting of storing the ion with the bottom trap,
linearly transferring to the upper trap, and finally stor-
ing the ion with the upper trap, all scaled to cover an
arbitrary number of RF cycles. Sample paths are dis-
played in Fig. 6 in conjunction with their analytic stabil-
ity triplets. Due to deviations in the trapping potential
far from the origin, trap stability was weakened for large
values of α, to the point that stability is lost for α > 0.3.
However, as noted at the end of Sec. III, large values of
α are rarely relevant for practical ion junction operation.
Additionally, Fig. 6 illustrates differences in axial poten-

tial strength and practical configurations for ion junction
tuning, as further discussed in the caption.

No tuning was necessary to configure the traps, as all
tested trap frequencies naturally occurred in the stable
region for the two-trap protocol. This is expected to hold
true for common ion trap configurations.

Instantaneous transfers are theoretically possible, but
will be practically limited by filters on the RF voltages
and the need to minimize motional excitation. In numer-
ical tests, control electrodes successfully contained the
ion, although in some transfers, the average vy was in-
creased. This corresponds to the attenuation of the sta-
bility cross-section of the junction transfer observed as α
increases in Fig. 5, predicting that the ion would be lost
in the y-axis for sufficiently large α.

V. TRAP CONFIGURATION AND
ARCHITECTURE

In order to implement this junction scheme, the RF
electrode voltage must be lowered on one entire trap
while it is simultaneously raised on the other trap. There
are two ways to accommodate this requirement. The
first is to rely on a segmentation of the RF rails, such
that particular sections of the linear traps are on while
other sections are off. This nontrivial hardware change
would facilitate a simple qubit transport protocol that
would allow arbitrary ion movement within the array.
Segmented RF designs have been studied and attempted,
but so far with limited success due to technical challenges
like equalizing the phase and amplitude of distinct but
neighboring switchable RF electrodes. The second option
is to use linear traps where continuous RF electrodes are
all on or all off, depending on the layer. This simplifies
the hardware, but limits the allowed transport at a given
time to a single dimension.

Fig. 7 presents a layout with continuous RF electrodes.
Five ions that form a plaquette in a surface code are
shown; the data ions are stored at the intersection of the
two traps so that they can remain laterally stationary
during syndrome extraction, while the ancilla ion moves
vertically and horizontally to interact with each neigh-
boring data ion [32]. Neighboring plaquettes with differ-
ent movement patterns would require pauses in transport
to accommodate times where ancilla ions are scheduled
to move in orthogonal directions. Non-nearest neighbor
movement patterns are also possible with this design, and
will be highly dependent on junction timing, cooling pro-
tocols, and other specifics in order to minimize latency
due to transport. As an example, consider a particular
quantum program, consisting of a compiled sequence of
two-qubit gates entangling qubits i and j. With a fixed
maximum qubit capacity per trap, connectivity may be
represented as a graph, and a simple greedy algorithm
used to group qubits according to gate requirements.
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FIG. 6. An illustration of stable ion flights for the two-layer junction trap with µ = 0.75 and varied (α, β) =
(0, 0), (0.2, 0), (0.29, 0), (0.29,−0.15) for subfigures A–D, respectively. The total transition time was T = 2.9µs, and f(t)
was 0 until T/3, increased linearly to 1 at 2T/3, and then held there until T . For each trajectory, an ion at the RF null was
initialized with the exaggerated initial velocity of (5, 5, 5)m/s. Red (solid), green (dashed), and blue (dash and dotted) lines
correspond to x, y, and z respectively. Trajectory A was not predicted to be stable. The instability is confirmed by close
examination of the behavior along the y-axis: After junction operation, the ion has a small velocity in the positive y-direction
due to a lack of a containing α-field. In B–D with α > 0, the ion is completely stable. However, in the increase of α from B
to C, the erosion of the z-axis confinement due to the α-field generating a repulsive potential becomes increasingly evident, as
the ion center is shifted off the RF null by α-field asymmetries. In D, restrengthening the z-axis field by making β negative
illustrates one approach to ensuring ion stability, the other being to work with small µ and α. Values of α larger than 0.3 failed
to confine the ion, due to ion momentum during junction operation which was not included in our time-independent analysis.
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FIG. 7. Sample layout of four data ions (blue) and one
ancilla ion (red) arranged in a surface code plaquette. In this
diagram they are all trapped at the intersection of the two
trapping layers, even though only one trapping layer is active
at a time (except during transitions).

VI. CONCLUSION

We have introduced a novel concept for a microfab-
ricated ion trap that supports 2D ion transport using
vertically offset planar traps with RF electrodes that are
perpendicularly oriented. We developed a mathemati-
cal model of our junction, and solved it analytically for
bounded ion trajectories. The analytical model was aug-
mented by a dynamic numerical simulation of successful
ion transfer, verifying the existence of stable ion trajec-
tories throughout the transfer from one trap to the other.

We highlighted two types of RF electrode architectures
for synchronous ion transport to complement the unique
global trap structure required by the proposed junction
geometry. Segmented RF rails require modifications to
the simple and continuous rail designs currently in use,
but enable unrestricted ion transport protocols between
traps. Continuous RF rails do not require any additional
hardware design or modification, but will require coordi-
nated transport that may lead to additional latency.

While this novel junction design solves the problem
of RF lead routing for larger arrays of 2D ion traps, it
introduces other challenges that have to be overcome
to make it practically useful. Some of these may
be solved with additional integration, like replacing
free-space delivery and collection optics with integrated
waveguides and detectors. A fuller analysis would also
require trap-specific simulations to identify the optimal
RF and control voltage protocols for transferring ions
with minimal motional excitation. Even with these
new challenges, the analysis in this paper shows that
a two-layer trap geometry based on surface traps can
enable 2D qubit connectivity for trapped-ion quantum
computing.
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